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ABSTRACT
We propose a Bayesian learning method to capture the back-
ground statistics of a dynamic scene. We model each pixel
as a set of layered normal distributions that compete with
each other. Using a recursive Bayesian learning mechanism,
we estimate not only the mean and variance but also the
probability distribution of the mean and covariance of each
model. This learning algorithm preserves the multimodality
of the background process and is capable of estimating the
number of required layers to represent each pixel.

Categories and Subject Descriptors: I.4.8 [Image Pro-
cessing and Computer VisionScene Analysis]: Motion, Track-
ing, Object recognition

General Terms: Algorithms

Keywords: Background generation, Bayesian learning

1. INTRODUCTION
Segmentation of the moving regions, so called as fore-

ground, from the static part of a scene, commonly named as
background, is one of the most fundamental tasks in com-
puter vision with a wide spectrum of applications from com-
pression to scene understanding.

Earlier methods applied simple prediction filters to adapt
the background pixel intensities. In [5], Kalman filtering
is used to model background dynamics. Similarly Wiener
filter [9] is used to make a linear prediction of the pixel
intensity values, given the pixel histories. An alternative
approach models the probability distribution of pixel inten-
sities. This approach ignores the order in which observations
are made and focuses on the distribution of the pixel inten-
sities. In [10], a single Gaussian model is used per pixel and
the parameters are updated by alpha blending. Unfortu-
nately, these approaches fail in case the distribution of the
background color values do not fit into a single model.

Mixture models were proposed to handle the backgrounds
that exhibit multimodal characteristics. A mixture of three
Gaussians corresponding to road, vehicle and shadow pix-
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els are defined in [2] for a traffic surveillance application.
Likewise, Stauffer and Grimson [8] proposed to update the
model parameters of a mixture of Gaussian distributions
using an online Expectation Maximization (EM) algorithm.
In [4], integration of gradient information is suggested as an-
other feature of the multiple models. Although mixture of
Gaussian models can converge to any arbitrary distribution
provided enough number of components, this is computa-
tionally not feasible for real-time applications. Another ap-
proach that approximates the probability distribution of a
multimodal background is the nonparametric kernel density
estimation [1]. This method keeps samples of intensity val-
ues per pixel and uses these samples to estimate the density
function. Background subtraction is performed by thresh-
olding the probability of observed samples. In [7], motion
information is used to model dynamic scenes. Major dis-
advantages of the nonparametric approaches are that they
require large amount of memory to keep the previous mea-
surements and they are very computationally intensive.

In this paper, we describe a Bayesian approach to per
pixel background modeling. We model each pixel as layered
normal distributions. Recursive Bayesian estimation is per-
formed to update the background parameters. Proposed up-
date algorithm preserves multimodality of the background
model and the embedded confidence score determines the
number of necessary layers for each pixel.

2. BAYESIAN BACKGROUND
Our background model is most similar to adaptive mixture

models [8] but instead of mixture of Gaussian distributions,
we define each pixel as layers of 3D multivariate Gaussians.
Each layer corresponds to a different appearance of the pixel.
We perform our operations in the RGB color space.

Using the Bayesian approach, we are not only estimating
the mean and variance of the layer, but the probability dis-
tributions of mean and variance. We can extract statistical
information regarding to these parameters from the distribu-
tion functions. For now, we are using expectations of mean
and variance for change detection, and variance of the mean
for confidence. Prior knowledge can be integrated to the
system easily with prior parameters. Due to computation
of full covariance matrix, feature space can be modified to
include other information sources, such as motion.

Our update algorithm maintains the multimodailty of the
background model. At each update, at most one layer is up-
dated with the current observation. This assures the min-
imum overlap over layers. We also determine how many
layers are necessary for each pixel and use only those layers



during foreground segmentation phase. This is performed
with an embedded confidence score. Details are explained
in the following sections.

2.1 Layer Model
Data is assumed to be normally distributed with mean µ

and covariance Σ. Mean and variance are assumed unknown
and modeled as random variables [3, p.87-88]. Using Bayes
theorem joint posterior density can be written as:

p(µ,Σ|X) ∝ p(X|µ,Σ)p(µ,Σ). (1)

To perform recursive Bayesian estimation with the new ob-
servations, joint prior density p(µ,Σ) should have the same
form with the joint posterior density p(µ,Σ|X). Condition-
ing on the variance, joint prior density is written as:

p(µ,Σ) = p(µ|Σ)p(Σ). (2)

Above condition is realized if we assume inverse Wishart
distribution for the covariance and, conditioned on the co-
variance, multivariate normal distribution for the mean. In-
verse Wishart distribution is a multivariate generalization
of scaled inverse-χ2 distribution. The parametrization is

Σ ∼ Inv-Wishartυt−1(Λ
−1
t−1) (3)

µ|Σ ∼ N(θt−1,Σ/κt−1). (4)

where υt−1 and Λt−1 are the degrees of freedom and scale
matrix for inverse Wishart distribution, θt−1 is the prior
mean and κt−1 is the number of prior measurements. With
these assumptions joint prior density becomes

p(µ,Σ) ∝ |Σ|−((υt−1+3)/2+1)× (5)

e

(
− 1

2 tr(Λt−1Σ
−1

)−
κt−1

2 (µ−θt−1)T Σ−1
(µ−θt−1)

)
for three dimensional feature space. Let this density be la-
beled as normal-inverse-Wishart(θt−1,Λt−1/κt−1; υt−1,Λt−1).
Multiplying prior density with the normal likelihood and ar-
ranging the terms, joint posterior density becomes normal-
inverse-Wishart(θt,Λt/κt; υt,Λt) with the parameters up-
dated:

υt = υt−1 + n κn = κt−1 + n (6)

θt = θt−1
κt−1

κt−1 + n
+ x

n

κt−1 + n
(7)

Λt = Λt−1 +

n∑
i=1

(xi − x)(xi − x)T +

n
κt−1

κt
(x− θt−1)(x− θt−1)

T (8)

where x is the mean of new samples and n is the number of
samples used to update the model. If update is performed
at each time frame, n becomes one. To speed up the sys-
tem, update can be performed at regular time intervals by
storing the observed samples. During our tests, we update
one quarter of the background at each time frame, therefore
n becomes four. The new parameters combine the prior in-
formation with the observed samples. Posterior mean θt is
a weighted average of the prior mean and the sample mean.
The posterior degrees of freedom is equal to prior degrees
of freedom plus the sample size. System is started with the
following initial parameters:

κ0 = 10, υ0 = 10, θ0 = x0, Λ0 = (υ0 − 4)162I (9)

where I is the three dimensional identity matrix.
Integrating joint posterior density with respect to Σ we

get the marginal posterior density for the mean:

p(µ|X) ∝ tυt−2(µ|θt,Λt/(κt(υt − 2))) (10)

where tυt−2 is a multivariate t-distribution with υt − 2 de-
grees of freedom.

We use the expectations of marginal posterior distribu-
tions for mean and covariance as our model parameters at
time t. Expectation for marginal posterior mean (expecta-
tion of multivariate t-distribution) becomes:

µt = E(µ|X) = θt (11)

whereas expectation of marginal posterior covariance (ex-
pectation of inverse Wishart distribution) becomes:

Σt = E(Σ|X) = (υt − 4)−1Λt. (12)

Our confidence measure for the layer is equal to one over
determinant of covariance of µ|X:

C =
1

|Σµ|X|
=

κ3
t (υt − 2)4

(υt − 4)|Λt|
. (13)

If our marginal posterior mean has larger variance, our
model becomes less confident. Note that variance of mul-
tivariate t-distribution with scale matrix Σ and degrees of
freedom υ is equal to υ

υ−2
Σ for υ > 2.

System can be further speed up by making independence
assumption on color channels. Update of full covariance
matrix requires computation of nine parameters. Moreover,
during distance computation we need to invert the full co-
variance matrix. To speed up the system, we separate (r,
g, b) color channels. Instead of multivariate Gaussian for a
single layer, we use three univariate Gaussians correspond-
ing to each color channel. After updating each color channel
independently we join the variances and create a diagonal
covariance matrix:

Σt =

 σ2
t,r 0 0
0 σ2

t,g 0
0 0 σ2

t,b

 . (14)

In this case, for each univariate Gaussian we assume scaled
inverse-χ2 distribution for the variance and conditioned on
the variance univariate normal distribution for the mean.

2.2 Background Update
We initialize our system with k layers for each pixel. Usu-

ally we select three-five layers. In more dynamic scenes more
layers are required. As we observe new samples for each
pixel we update the parameters for our background model.
We start our update mechanism from the most confident
layer in our model. If the observed sample is inside the 99%
confidence interval of the current model, parameters of the
model are updated as explained in equations (6), (7) and (8).
Lower confidence models are not updated.

For background modeling, it is useful to have a forgetting
mechanism so that the earlier observations have less effect
on the model. Forgetting is performed by reducing the num-
ber of prior observations parameter of unmatched model. If
current sample is not inside the confidence interval we up-
date the number of prior measurements parameter:

κt = κt−1 − n (15)

and proceed with the update of next confident layer. We do
not let κt become less than initial value 10. If none of the
models are updated, we delete the least confident layer and
initialize a new model having current sample as the mean



and an initial variance (9). The update algorithm for a single
pixel can be summarized as follows.

Given: New sample x, background layers
Sort layers according to confidence measure as in eq. (13)
i← 1.
while i < k

Measure Mahalanobis distance:
di ← (x− µt−1,i)

T Σ−1
t−1,i(x− µt−1,i).

if sample x is in 99% confidence interval
then update model parameters according to

equations (6), (7), (8) and stop.
else update model parameters according to

equation (15).
i ← i + 1

Delete layer k, initialize a new layer having parameters
defined in equation (9).

With this mechanism, we do not deform our models with
noise or foreground pixels, but easily adapt to smooth inten-
sity changes like lighting effects. Embedded confidence score
determines the number of layers to be used and prevents un-
necessary layers. During our tests usually secondary layers
corresponds to shadowed form of the background pixel or
different colors of the moving regions of the scene. If the
scene is unimodal, confidence scores of layers other than
first layer becomes very low.

2.3 Foreground Segmentation
Learned background statistics is used to detect the changed

regions of the scene. Number of layers required to represent
a pixel is not known beforehand so background is initialized
with more layers than needed. Using the confidence scores
we determine how many layers are significant for each pixel.
We order the layers according to confidence score (13) and
select the layers having confidence value greater than the
layer threshold Tc. We refer to these layers as confident lay-
ers. Note that, Tc is dependent on the covariance of mean
of the pixel so it is dependent on color range of the pixel.
We perform our operations in 0-255 color range and select
Tc=1.0. For different color ranges Tc should be modified.

We measure the Mahalanobis distance of observed color
from the confident layers. Pixels that are outside of 99%
confidence interval of all confident layers of the background
are considered as foreground pixels. Finally, connected com-
ponent analysis is performed on foreground pixels.

3. SHADOW CLASSIFIER
We revise foreground pixels to remove shadow pixels. First,

we determine whether a pixel is a possible shadow pixel by
evaluating the color variation. We assume that shadow de-
creases the luminance and changes the saturation, yet it does
not affect the hue. The projection of the color vector to the
background color vector gives us the luminance change h

h = |I(p)| cos φ (16)

where φ is the angle between the background B∗
t (p) and

It(p). We define a luminance ratio as r = |B∗
t (p)|/h. We

compute a second angle φB between the B∗
t (p) and the white

color (1, 1, 1). For each possible foreground pixel obtained,
we apply the following test and classify the pixel as a shadow
pixel if it satisfies both of the conditions

φ < min(φB , φ0) , r1 < r < r2 (17)

Figure 1: Shadow is defined as a conic volume around

the corresponding background color of pixel.

Table 1: Mixture of 4-Gaussians
M-1 M-2 M-3 M-4 M-5

Mean 0.200 0.600 0.300 0.800
Real Std. 0.015 0.030 0.050 0.050

Mean 0.203 0.203 0.599 0.599 0.938
Std. 0.008 0.008 0.011 0.011 0.063

EM Conf. 0.377 0.377 0.122 0.122 0.011
Mean 0.200 0.599 0.302 0.800 0.938
Std. 0.014 0.027 0.045 0.062 0.063

Bayes Conf. 0.399 0.382 0.108 0.108 0.001

where φ0 is the maximum angle separation, r1 < r2 de-
termines maximum allowed darkness and brightness respec-
tively. Thus, we define shadow as a conic around the back-
ground color vector in the color space (Fig. 1). Those pix-
els that satisfy the above conditions are marked as possible
shadow pixels, the rest remains as possible foreground.

At the second stage, we refine the shadow pixels by eval-
uating their local neighborhood. If the illumination ratio
of two shadow pixels are not similar than they assigned as
unclassified. Then, inside a window the number of fore-
ground C, shadow S, and unclassified pixels U are counted
for the center pixel, and following rules are applied itera-
tively: (C >U)∧(C >S)→C, (S >U)∧(S >C)→S, and else
U . The shadow removal mechanism is proved to be effective
and adjustable to the different lighting conditions.

4. COMPARISON WITH ONLINE EM
Although our model looks similar to Stauffer’s GMM’s [8],

there are major differences. In GMM’s, each pixel is repre-
sented as a mixture of Gaussian distribution and parame-
ters of Gaussians and mixing coefficients are updated with
an online K-means approximation of EM. The approach is
very sensitive to initial observations. If the Gaussian compo-
nents are improperly initialized, every component eventually
converges to the most significant mode of the distribution.
Smaller modes nearby larger modes are never detected. We
model each pixel with multiple layers and perform recursive
Bayesian learning to estimate the probability distribution of
model parameters. We interpret each layer as independent
of other layers, giving us more flexibility.

To demonstrate the performance of the algorithm, we used
a mixture of 1D Gaussian data contaminated with uniform
noise. The data consists of 23000 samples that are gener-
ated by 4 Gaussian processes. We threat the samples as
observations coming from a single pixel and estimate the
model parameters with our approach and online EM algo-



(a)
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Figure 2: (a) Original sequence. (b)Most confident two

layers with recursive Bayesian learning. (c) Most confi-

dent two layers with online EM. With recursive Bayesian

learning, we are able to model the shadows whereas in

EM the first and second layers converge into one.

rithm. We assume that we observe the data in a random
order. We present the input data parameters, the estimated
model parameters by the online EM and the Bayesian learn-
ing methods, as well as the normalized confidence scores in
Table 1. We observed that our confidence score is very ef-
fective in determining the number of necessary layers for
each pixel. Even if we estimate the model parameters with
five layers, it is clear from our confidence scores that how
many layers are effective. Real data results are presented
in Figure 2 using a traffic sequence. As visible, he first and
second layers of our background corresponds to the origi-
nal and shadowed version of the background. The locations
where most of the cars move have higher variances, so usu-
ally they are less confident. Those pixels are shown in red.
First and second layers converged to the most significant
mode in online EM algorithm.

Results prove that, in online EM, usually multimodality
is lost and models converge to the most significant modes.
With our method, multimodality of the distribution is main-
tained. Another important observation is, estimated vari-
ance with online EM algorithm is always much smaller than
the actual variance. This is not surprising because the up-
date is proportional to the likelihood of the sample, so sam-
ples closer to the mean become more important.

5. VSSN 2005 DATASETS
We made an initial evaluation of the proposed foreground-

background detection method as given in Table 2 using the
RGB color space. We observed that the accuracy does not
change for the XYZ color space, and it drops in case of
the HSV or Lab. We computed four performance metrics,
namely averages and maximums of the false alarms and

Table 2: Detection Results using VSSN Datasets
Bayesian Li’s

Ave False Alarm 4 3
Ave False Miss. 244 858
Max False Alarm 167 119

Video1 Max False Miss. 856 3452

Ave False Alarm 0 3
Ave False Miss. 186 361
Max False Alarm 6 61

Video2 Max False Miss. 786 1641

Ave False Alarm 261 282
Ave False Miss. 381 385
Max False Alarm 2135 4302

Video3 Max False Miss. 1902 2049

Ave False Alarm 284 190
Ave False Miss. 616 1007
Max False Alarm 2192 3470

Video4 Max False Miss. 1875 3632

false misses. We also tested the implementation of the Li’s
method [6].

Our results show that the proposed method achieves much
lower false alarms and false misses at the same time. Our
maximum false alarms and false misses are also much lower
than the Li’s method.
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